SiC 2 MATERIALS SCIENCE M

Next Generation Vials for COVID-19 vaccines and cell and gene therapies.

Millrock Webinar Chris Weikart & Peter Sagona April 8th, 2021

Challenges with COVID-19 Vaccines and Gene Therapy Drugs

- Biologic Based Drugs/Vaccines
 - Complex molecules
 - o Inherently unstable in liquid formulations
- Currently requires cryogenic storage to meet shelf life
- Efforts ongoing to Lyophilize (Freeze Drying) drug to eliminate cold storage.

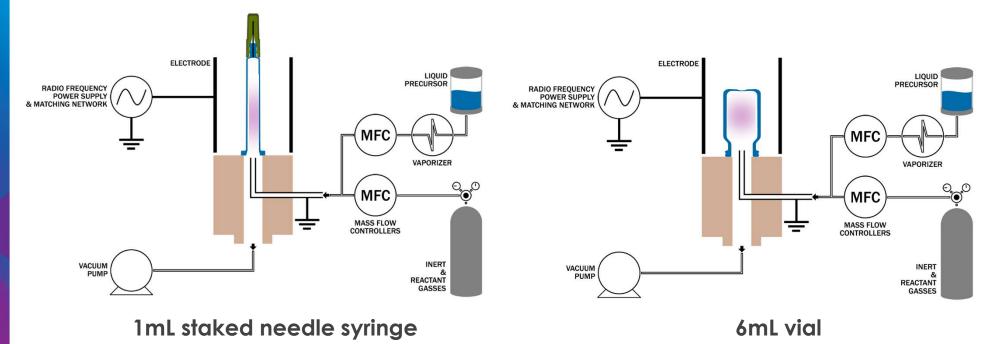
Technology

Hybrid Parenteral Vials – Materials of Construction

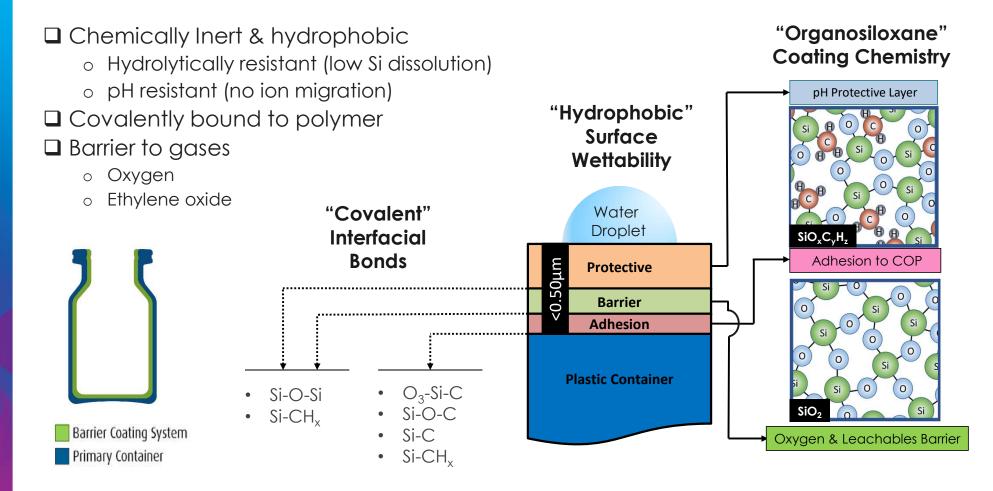
Primary Container (polymer)

- o Injection Stretch Blow Molded
- Medical Grade Cyclic Olefin Polymer (COP/COC)
- Low dimensional Variability
- o Optically clear & shatter resistant
- High barrier to water vapor

Barrier Coating System (glass-like)


- Plasma Enhanced Chemical Vapor Deposition
- Silicon-based coating
- High barrier to oxygen
- o Inert No extractable/no leachables
- Barrier to label adhesives/polymer additives
- o Optically clear

1		2
(
Bai	rier Co	ating System
Pri	mary (Container


Proprietary Technology Applied to Any Container Geometry

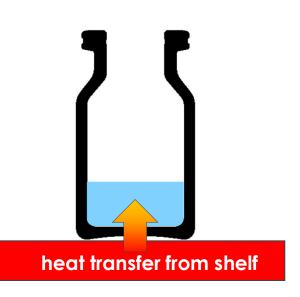
- Plasma enhanced chemical vapor deposition (PECVD)
- Coating applied to the inside of syringes, vials, cartridges of all geometries
- Inert drug contact surface is equivalent irrespective of container

Characteristics of Barrier Coating System

Lyophilized Drugs/Vaccines

Exploiting SiO2 Hybrid Vials for Lyo

	Borosilicate Glass	SiO ₂ Medical Products
No Breakage	 Freezing expansion/contraction Filling, handling & transport 	 Shatter resistant hybrid material Breakage eliminated at high fill
Lower Particles	Wall Shear from freeze expansionGlass particles injected into patient	 Covalent bonding Lower shear force Eliminates glass particles
Drying Consistency	Variability in mass and dimensionsHigher heat transfer variability	 Lower mass and dimensional variation Flatter bottom vials
No Wall Residue	 Hydrophilic surface Solution wicks & cake sticks to wall 	 Consistent hydrophobic surface No cake sticking or wicking
Less Protein Aggregation	Higher shear stress on proteinsProtein denaturing & aggregates	 Lower protein shear forces Lower aggregates & denaturing
Higher Fill Volumes	Fill volumes kept below 50%Risk of breakage	 100% fill volumes possible No breakage



Polymer Thermal Conductivity and Vial Base Reduces Heat Transfer

Heat transfer coefficient of vials (K_V) is dependent on:

□ Thickness & mass of vial wall

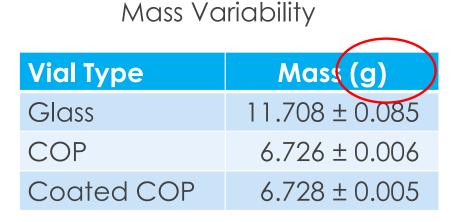
- □ Thermal conductivity (h) of material
 - COP/COC 0.13 W/m K
 - Glass 1.20 W/m K
 - Air 0.023 W/m K
- □ Contour of vial base

Improving COP/COC Vial Heat Transfer

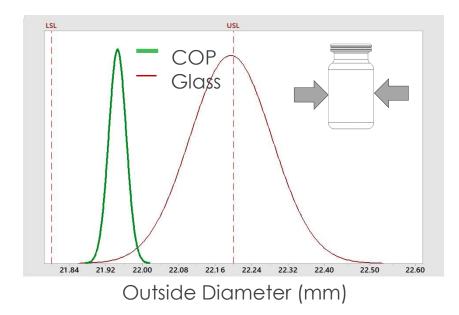
Base of SiO2 Vials

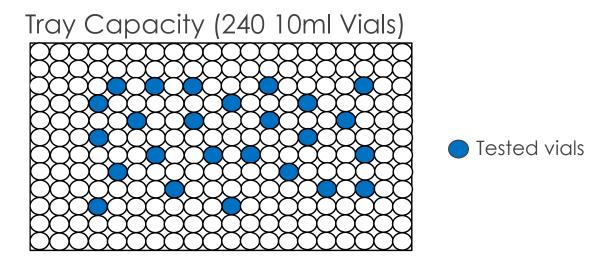
Standard

Flat-Bottom

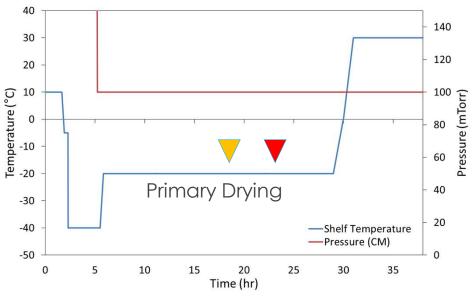


Ink-blot test for flatness




Lower Dimensional and Mass Variability

Dimensional Variability



Improved Heat Transfer and Less Batch SiO2 Variability

Vial Type	Kv *10 ⁴ (cal/s/cm²/ºC)	Standard Deviation		
Glass	4.23	± 0.19		
Coated COP	3.18	± 0.07		
Coated COP (Flat Bottom)	3.56	± 0.07		

Lower Moisture Loss Variability Within Batch

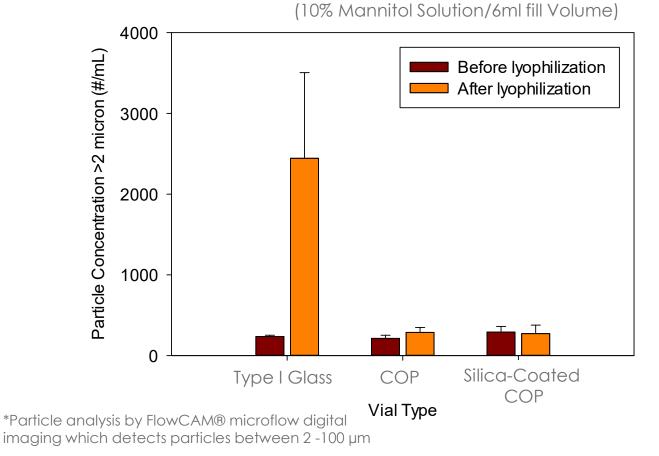
Relative Std Dev (% water lost)									
Vial Type	V18 hrs	2 3 hrs							
Glass	6.5	0.2							
Coated COP (Flat Bottom)	1.7	0.5							

 Glass has more water loss variability during primary drying (sublimation).

Ensures more consistent lyo product quality.

No Breakage Irrespective of Fill Volume

Fill	Fill	Gla	ass	SiO2		
Volume (mL)	Percentage (%)	# Broken %		# Broken	%	
10	100	4 /12	33	0/16	0	
8	80	<mark>5</mark> /27	19	0/37	0	
6	60	1 /38	3	0/38	0	
4	40	0/35	0	0/38	0	

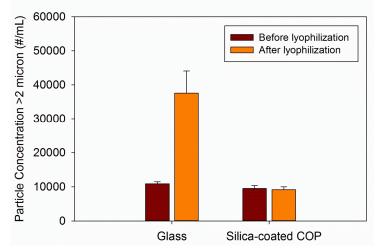


NOTE: Conducted at Millrock Technology

- □ Vials filled with 10% w/v mannitol solution
- Freezing: Shelves were cooled to -40°C at a rate of 1°C/min and held for two hours to freeze
- Drying: Chamber pressure was reduced to 150mT and the shelf was warmed to 5°C at 0.5°C/min.

Fewer Subvisible Particles after Reconstitution

Similarities and Improvements Compared


to Glass

Lyo Formulation:

1 mg/ml IVIg 10mM glycine 5% w/v sucrose 0.02% v/v polysorbate 20

- Similarities: Initial residual moisture content, cake appearance, reconstitution time, and protein recovery.
- □ Improvements:
 - 4X Lower particle levels in reconstituted formulations in coated COP.
 - Less variable Kv and drying rates.

Eliminates Wall Residue – Hydrophobic Coatin

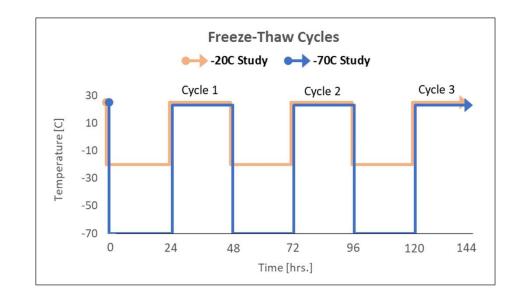
Placebo Formulation:

- o hemophilia
 - o high salt content
 - polar solution
- Wall Residue
 - Silica-coated vials: NONE
 - o Glass: Significant
- Conclusion: hydrophobic coating surface reduces wall residue for some formulations.

Cold Storage

Exploiting SiO2 Hybrid Vials for Cell & Gene Therapies

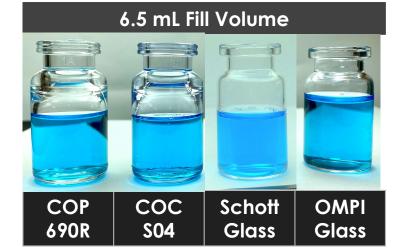
No CCI Leakage at Cryo Temps (-196°C)
 Low Particles
 No Organic or Inorganic Leachables
 Barrier to Oxygen
 No Breakage
 Serialization – Track & Trace
 Ready-to-use


Freeze-Thaw Study Design (-20°C & -70°C)

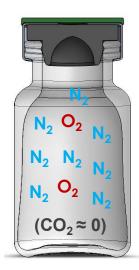
Experimental:

- Vials filled with various volumes of high purity water and enclosed with rubber stopper and aluminum crimp
- Vials then placed in freezer, one group at -20C and another group at -70C
- After a 24-hour at temperature, vials were removed from freezer and held at room temp for 24 hours.
- Freeze-thaw cycle repeated 3 times with visual inspections after each cycle (cycle = low temp + room temp)

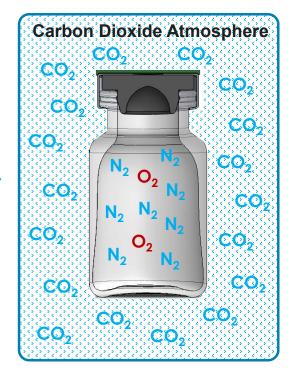
10 mL Vial Fill (representative)


No Breakage Observed for SiO2 Vials at-70C

Low temp. to room temp. (24 hr. soak at each temp, no ramp between)

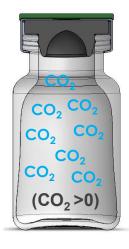

Manufacturer		Fill	# Failures (n = 50)					
	Material	Volume	Cycle 1	Cycle 2	Cycle 3	TOTAL		
	-70C Cycling							
SiO2	COP 690R	6.5 mL	0	0	0	0		
SiO2	COC S04	6.5 mL	0	0	0	0		
Schott	Glass	6.5 mL	0	3	1	4		
OMPI*	Glass	6.5 mL	2	1	2	5		

No Breakage for any vials at -20°C cycling


*Ompi vials are 8 mL vial geometry

Deep Cold Storage CCI Experimental CO₂ Headspace Analysis @ -80C

Storage


Sample sealed at ambient conditions (Air) and headspace CO₂ measured

Driving Force

Carbon Dioxide (CO₂) rich atmosphere ensures a concentration gradient between the chamber atmosphere and the container headspace

Loss of seal

integrity equals

increase of CO₂

At each timepoint

headspace

measured again

Preservation of seal

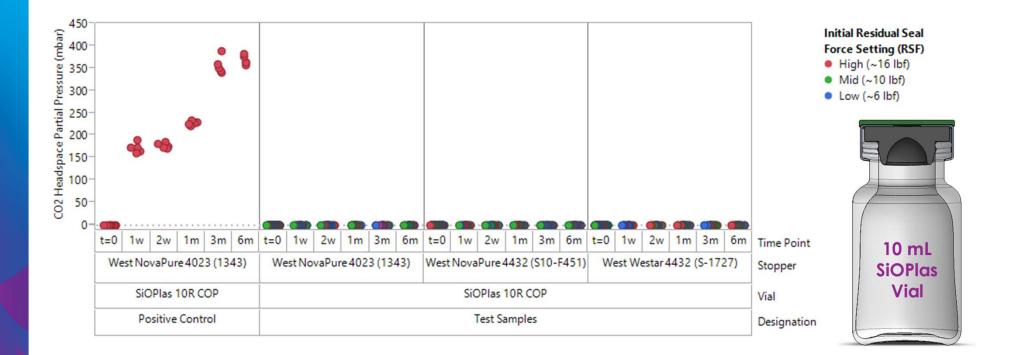
integrity equals

preservation of air

headspace

CCI Study Design (-80°C)

		Cona	tainer Closure Sy	/stem (CCS)	Vial-Closure	Seal	Storage				Time Poi	nts			Total	
Set	Туре	Vial	Сар	Stopper	Finish	Compression	Temp.	t=0	1	2	1	3	6	12	Meas.	
		Viai	Cap	зторрет	(mm)	(RSF-lbf)	(C)	ι-0	week	weeks	month	months	months	months		
	Test	SiOPlas 10 mL	West	West NovaPure		Low			20	20	20	20	20	20		
1	Samples	COP Vial	Flip-Off Seal	1343, 4023/50	20	Mid	-80	360	20	20	20	20	20	20	720	
	Samples	COF Viai	(Aluminum Crimp)	1343, 4023/30		High			20	20	20	20	20	20		
	Test	SiOPlas 10 mL	West	West NovaPure		Low			20	20	20	20	20	20		
2	Samples	COP Vial	Flip-Off Seal	S10-F451-4432/50	20	Mid	-80	360	20	20	20	20	20	20	720	
	Samples	COP Viai	(Aluminum Crimp)	310-F431-4432/30	510-1451-4452/50		High			20	20	20	20	20	20	
	Test	SiOPlas 10 mL	West	West Westar RU		Low			20	20	20	20	20	20		
3	Samples	COP Vial	Flip-Off Seal	(non-Flurotec coated)	20	Mid	-80	360	20	20	20	20	20	20	720	
	Samples	COF Viai	(Aluminum Crimp)	S-1727, 4432/50, B2-42		High			20	20	20	20	20	20		
4	Positive Controls	SiOPlas 10 mL COP Vial (5µm Laser Drilled)	West Flip-Off Seal (Aluminum Crimp)	West NovaPure 1343, 4023/50	20	High	-80	30	5	5	5	5	5	5	60	


- All test samples stoppered and crimped at Genesis Packaging Technologies under ambient conditions
- Positive controls samples, 5 µm laser drilled SiOPlas 10 mL COP vials, prepared by Lighthouse Instruments
- All headspace CO₂ measurements via FMS-Carbon Dioxide Headspace Analyzer performed by Lighthouse Instruments

4/8/2021

No measurable changes in headspace observed after 6 months at **-80°C**

Cryogenic Storage CCI Experimental O₂ Headspace Analysis @ -180C

Storage

Sample sealed at ambient conditions (Air) and headspace O₂ measured

Driving Force

Nitrogen (N_2) rich atmosphere ensures a concentration gradient between the chamber atmosphere and the container headspace

Loss of seal integrity

equals loss of O_2

At each timepoint

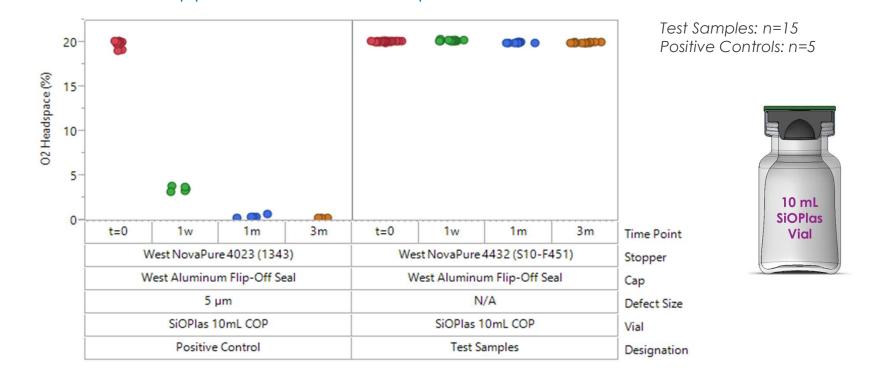
headspace

measured again

Preservation of seal

integrity equals

preservation of O₂


SiO2

MATERIALS SCIENCE

Results: 10 mL Vial Headspace O₂ Concentration (%) after 3 months at **-180°C** West NovaPure 4432 Stopper + Aluminum Crimp

Conclusion: No measurable changes in headspace observed after 3 months at -180°C

4/8/2021

Cell & Gene Therapy Company Using SiO2 2 (-80°C Cold Storage)

Peptide-based viral vector formulation

- soluble adaptor to redirect human T cell engineered to express an universal chimeric antigen receptor UniCAR against PSMA expressing solid tumors
- Packaged in 2mL SiO2 Vials
- 1+ year into 3-year cold storage (i.e. -80°C) stability study.

Eliminated borosilicate glass as a packaging option due to problems with ion migration into drug product.

Demonstrated Drug Stability in SiO2 2mL Vial SiD2 (1+ years @ -80°C Storage)

Purpose/Parameter	Method	Acceptance criteria	t0	1 m	3 m	6 m	9 m	12 m
án.	24						đ	
Appearance	Ph. Eur. 2.1.1/Ph. Eur. 2.2.2	colorless and clear	colorless and clear	colorless and clear	colorless and clear	colorless and clear	colorless and clear	colorless and clear
Identity	¹ H-NMR	For information only	conforms	conforms	conforms	conforms	conforms	conforms
Purity	RP-HPLC	For information only	97.5*	97.4	97.5	97.1	97.6 [#]	98.5*
Potency/Identity	Standardized cellular flow assay	50-150 %	94	105	79	101	101	125
Content	UV (280 nm)	0.6 mg/mL ± 10 %	0.60	0.60	0.60	0.61	0.60	0.61
рН	Ph. Eur. 2.2.3.	4.5 ± 0.2	4.4	4.5	4.5	4.4	4.5	4.4
Sterility	Ph. Eur. 2.6.1.	Sterile, no microbial contamination	Sterile		2			
Particulate contaminants (sub- visible particles)	Ph. Eur. 2.9.19.	≥ 10 µm: < 6000 per container ≥ 25 µm: < 600 per container	64 2		ž	8		43/container 0/container
Endotoxins	Ph. Eur. 2.6.14	< 5 EU/mL	0.15 EU/mL	30	ā.			
Test for integrity	According to ASTM E 515 - 2011	no leakage detected		20		÷		

28

Summary – SiO2 Hybrid Vials

Developed for Lyophilized Drug/Vaccine products

- Lower heat transfer variability \rightarrow Lower freezing/drying variability
- No breakage and no wall residue
- Fewer particles and aggregates compared to glass
- Demonstrated to withstand extreme cold storage requirements.
 - No CCI leakage down to -180°C
 - Drug stability with a viral vector formulation stored at -80C for 1+ years