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Definitions

• Scale-Up

– Increase the extent of lyophilizer loading

– Increase of lyophilizer size

– Done as part of most tech transfers

• Technical Transfer

– Moving from one commercial mfg site to another

– Moving from R&D -> Clinical/Pilot -> Commercial 

mfg

• Also includes scale-up

• Also includes improvements in the lyo cycle, and 

establishment of acceptable process parameter ranges
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HEAT AND MASS TRANSFER
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Increased Extent of Loading

• Always a factor:

– Thermal radiation heat transfer distributed over a larger 

number of vials

• This is a minor effect

• Primary drying: Lower product T’s, slower primary drying

• Observed in some cases:

– Unable to hold pressure set point due to choked flow or 

condenser overload

– Slower secondary drying

– Higher residual moisture 

• Other possibilities to consider:

– Slower shelf ramps due to higher thermal load

– Effects of longer loading and unloading times
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Thermal Gradients in Lyophilizers

• Post-SIP re-cooling is not perfect

– Not re-cooled: force distribution structure at the top of 

the dryer, above the shelf stack

– Lyo walls are usually re-cooled after SIP 

• Do not take for granted that it is sufficient!

• Before vacuum is pulled, hot air rising causes a 

top-to-bottom temperature gradient in the dryer

• After vacuum is pulled, thermal radiation 

continues to emit from the warmer structures at 

the top of the dryer, preferentially affecting the 

higher shelves 
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Extent of Loading 2

• Loading usually begins with the top shelf

• Increasing the extent of loading means that 

the additional vials load on progressively lower 

shelves

• Lower shelves are a slightly “cooler” 

environment
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Primary Drying Effects
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Secondary Drying Effect
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et al. (eds.), Quality by Design for Biopharmaceutical Drug Product Development, AAPS Advances in the 

Pharmaceutical Sciences Series 18, DOI 10.1007/978-1-4939-2316-8_14



TECHNICAL TRANSFER
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Moving from R&D -> cGMP MFG

• Lower ice nucleation temperatures in cGMP 

mfg

– Cleaner conditions, less particulate that can act as 

ice nucleation sites

– Results in smaller ice crystals, slower drying at 

higher product temperatures

• Higher vial breakage rates in commercial mfg

– Depyrogenation and conveying damage the vials

– Breakage during lyo not uncommon
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Nucleation T can also affect product 
quality

• Lactate dehydrogenase activity affected by the ice 

nucleation temperature

• Protein adsorption to the ice interface?
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Technical Transfer

• Change in equipment

– Understand the differences (may require 

experiments to characterize)

• Moving further through the product life-cycle

– Full QbD development requires extensive 

laboratory characterization of the product and the 

lyophilization cycle

– Define Proven Acceptable Ranges (PARs) in time 

for initial Process Qualification
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PAPER-BASED ASSESSMENTS
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Information Gathering

• Operational Parameters

– Temperatures and pressures

– Heating, cooling, and vacuum rates

– Shelf heat transfer coefficient

• Dimensions

– Connecting duct cross-sectional area in relation to 

shelf surface area

– Condenser coils/plates surface area in relation to 

shelf surface area

• Controls
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EXPERIMENTS
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Experiments

Laboratory Production

Drying rate capability vs pressure  

Shelf heat transfer coefficients  

Product drying rate 

Basic lyo cycle development 

Proven Acceptable Range testing 

Edge of failure testing 

Evaluate specific process deviations 
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Approach

Use lab lyophilizers as “scale-down” models to:

– Develop a cycle that will work in commercial 

manufacturing lyophilizers with minimal change in 

quality attributes

– Cycle should be as short as possible

– Generate Proven Acceptable Ranges (PAR’s) for 

production scale to allow “space” for all of the 

factors discussed in this presentation

• +/- 2 C and +/- 20 mTorr for all of the drying steps (HH 

and LL discussed further later)

– Test the effect of process deviations
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Heat Transfer Efficiency
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Pharmaceutical Sciences Series 18, DOI 10.1007/978-1-4939-2316-8_14
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Drying Rate Capability
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Questions?


