Innovative approaches for lyophilization process, equipment and drug product characterization

Peptalk 2017

Ahmad M. Abdul-Fattah

Coriolis Pharma Research GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany

10th January 2017

Acknowledgments

Andrea Hawe Ilona Vollrath Alexandra Mikolijka Michael Wiggenhorn Thomas Bosch Angelika Freitag Victoria Pauli/Laura Benz

Gerhard Winter

T.N. Thompson Todd Reihbandt

PAT tools for freeze drying

Mathad		Management	Primary drying		Product		Feasible		Compatible w/ autom.
	Method	Measurement principle	end point	temp.	solid-state	moisture	scale-up	Sterilizability	loading system
	СМ	Absolute pressure of the chamber	-	-	-	-	+	+	+
	Pirani gauge	Nitrogen pressure of the chamber	-	-	-	-	+	+	+
techniques	Comparative CM vs. Pirani	Absolute vs. nitrogen pressure of the chamber	+	-	-	-	+	+	+
	PRT (e.g. MTM, DPE)	Rise of the absolute chamber pressure	+	+1	-	+1	_2,3	+	+
	Condenser pressure	Increase in nitrogen pressure	+	-	-	-	_3	+	+
Ч С	TDLAS	Flow and composition of the gas	+	+1	-	+1	_3	+	+
Bat	Lyotrack	Composition of the chamber gas	+	-	-	+1	+	+	+
	RGA	Composition of the chamber gas	+	-	-	+1	+	+4	+
	Dew point	Dew point temperature of H ₂ O	+	-	-	-	+	+4	+
	Windmill	Water vapor flow	+	-	-	-	_3	+	+
	Raman	Inelastic scattering of radiation by product	-	-	+	-	_5	-	-
	NIR / FT-IR	Absorption of radiation by product	+	-	+	+	_5	-	-
	тс	Product temperature	+	+	-	-	-	-	-
	RTD	Product temperature	+	+	-	-	-	+	-
	TEMPRIS	Product temperature	+	+	-	-	+	+	+
es	OFS	Product temperature	+	+	-	-	-	+	-
nb i	Soft-sensor	Product temperature	+	+	-	-	+	+	+
echni	Dielectric spectroscopy	Polarizability of the product	+	+	+	+	-	-	-
Vial t	XRPD	Diffraction of the radiation by the product	-	-	+	-	_5	-	-
	Microbalance	Loss of mass of the product	+	-	-	+	_5	-	-
	Heat transfer monitor	Heat flow from the shelf to the product	+	-	-	-	-	-	-
	NMR spectroscopy	Relaxation of the magnetic moments of the product	+	-	+	-	_5	-	-
	Photographic observation	Position of the sublimation interface in the product	+	-	-	-	_5	+	-

¹Average value. Only applicable in freeze-dryers with ²fast closing valve, ³external condenser chamber, ⁴additional isolation system or ⁵ 'line of sight' to the sample.

Raman and Near-Infrared Spectroscopic Methods for In-Line Monitoring of Freeze-Drying Process. Ari Kauppinen Dissertation, 2015, University of Eastern Finland.

- PAT in the Laboratory: Case Studies in evaluating the heat flux sensor technology
 – Summary and conclusions
- PAT in the Laboratory: Case Studies in evaluating head space moisture
 - Summary and conclusions

PAT in the Laboratory: Case Studies in evaluating the heat flux sensor technology

Heat flux sensor Concept

Heat flux sensor (Accuflux[™]) introduced by Millrock Technology Inc. (Kingston, NY) as a new monitoring PAT tool for freeze drying.

- > Differential thermocouple sensor
- Mounted directly on freeze-dryer shelf
- Measures 3.6 x 3 cm
- Equipped with a built-in thermocouple to measure shelf temperature (ANSI Type T)
- ➤ Equipped with 2 cm of stainless steel tape (scaffold) mounted around the sensor → even standing of monitored vials
- Sensors fixed on shelf with electrically conductive silver filled epoxy
- Records data every 30 sec
- ➢ Heat flux output: W/m²

oriolis Ph

opharmaceutical Research and Development

 Experiments performed on a <u>Millrock Magnum[®] Series</u> freeze dryer

Heat flux measurements in freeze drying

> Heat flux (W/m²) and shelf temperature T_s (°C) measured by the Accuflux[™] sensor.

> Product temperature T_P (°C) is measured via thermocouples located on the top of the sensor.

> LyoPAT[™] software calculates vial heat transfer coefficient (K_v) [W/m².°C]:

$$K_v = \frac{heat \, flux}{(T_s - T_p)}$$

LyoPAT[™] software also calculates an estimated product temperature T_{P, est} (°C), when K_v of a given process is known. $T_{p,est} = \frac{heat flux - Kv * Ts}{-K_v}$

LyoPAT[™] User Interface

A heat flux sensor offers a closed loop control of the whole process

Required input parameters

1) Vial characteristics

- \Rightarrow number of (product) vials
- $\Rightarrow \text{ Mass of vial}$
- \Rightarrow vial inner surface area
- \Rightarrow vial outer surface area
- \Rightarrow K_v (predetermined)

2) Product characteristics

- \Rightarrow Concentration (g/g)
- \Rightarrow Critical temperature of the product (Tg', Tc or Te)

3) Fill characteristics

- \Rightarrow Fill volume (ml)
- \Rightarrow Fill weight (mg)

CYCLE: N PHASE: N STEP#: N PLC TIME : 14:22:06	IN SHELF SETPOINT: 5.0 °C IN SHELF TEMPERATURE: 19.2 °C VACUUM SETPOINT: 100 MTORR CONDENSER TEMP: 19.5 °C PRODUCT AVE: °C	
INPUT PRODUCT NAME : 20150824_Lyof - Batch Data F Concentration (%w/w) 8.7 Spec Ht Solids (Cp) 0.00 Vial Fill (mi) 2.0 Number of Vials 403 Outer Vial Diam (cm) 2.2 Inner Vial Diam (cm) 2.0	AT_Run2_LB.rcp PRODUCT # : 20150824_LyoPAR_Run2_LB.rcp DESCRIPTION: 20150824_LyoPAR_Run2_LB.rcp reezing Conditions Primary Drying Secondary Drying Alarms Heat Flow (W/sq m) 400 Product temp. Tp = Tc = 0 Temp. @ 2nd Drying (*C) 30.0 Product temp. Tp = Tc = 0 Primary Drying (mTorr) Temp. @ 2nd Drying (mTorr) Cond Over Critical Temp Tc (*C) -32 Primary Drying (mTorr) 100 2nd Ramp Rate (*C/min) 0.0 ra-freeze Below Tc (*C) 2.0 END OF PRIMARY DRYING Time @ 2nd Drying (min) 360 Final Temperature (*C) 5.0 Final Temperature (*C) 5.0 Final Temperature (*C) 5.0 Ly	rcp toad (*C) _40.0 t (mTorr) 3.000 uge (min) 10 OPAT (*)
Mass of Vial (g) 8.0 • Heat Flow Settings Thermal eq. (+/- W/sq m) 30 ? Kv Sublimation (W/sqm C) 28.7 Coeff of Sublimation 100.0 ? PreSet	Prim Vac start (mTorr) 100 % Sub Grav Trigger 0.0 ? RECIPE : 20150824_LyoPAT_Run2_LB.rcp Lyo Control Options PRODUCT TEMPERATURE ? NUCLEATION FREEZING DRYING (Thermocouple) NONE Recipe) Recipe) Accuflux AUTO	Rev. 2.02NS OPAT DATA PAT GRAPH
SENSOR STATUS REAR SENSOR MIDDLE SENSOR CORNER SENSOR	Nuc Pressure 50,000 mT Heat Flux: -3.8 W/m*2 Shelf Surface Temp 20.4 Kv: 28.7 W/(m*2.*C) SAVE SAVE	A DASHBOARD

Note: Need to determine critical temperature of product (e.g. DSC, FDM)

Basic tests: verification of procedure and evaluation of basic parameters

- Linearity (Heat flux vs. ΔT)
- Repeatability
- Robustness (vial position, moisture between shelf and vials)
- Sensor position (corner vs. center)
- Comparability of results obtained from Accuflux[™] & LyoPAT[™] to other PAT tools (e.g. T_{P, est} vs. measured T_P (TC), end of primary drying by comparative pressure measurements)
- Comparability of K_v determined from Accuflux[™] & LyoPAT[™] vs. K_v gravimetric

Basic tests: Potential applications of Accuflux[™] (heat flux measurements)^{*}

- > A robust, repeatable PAT tool for measurement and process monitoring
- > Reliable estimation of important parameters (T_p , K_v)
 - Estimated product temperature in good agreement with thermocouple (TC) readings
- > Kv determination and product temperature estimation
 - K_v (LyoPAT) < K_v (gravimetric)
- Detection of nucleation events
 - Monitoring freezing step in random and controlled nucleation
- Monitoring of progress of primary drying
 - Determination of end point of primary drying by Accuflux[™] in good agreement with TC and ΔT
 - Not as batch representative as comparative pressure measurements
- Quantification of radiation effects
 - Typical radiation
 - Atypical radiation

Case studies: test of heat flux sensor performance under a variety of different conditions

- Solids content
- Fill volume
- Cycle parameters: Freezing protocol, P_c, T_s
- Study secondary drying kinetics in amorphous formulations: sucrose and sucrose/BSA mixtures
- In progress: Preliminary studies on design space creation

- different vial size:
 ⇒ 1cc, 3cc, 5cc
- different shelf load
 ⇒ full / partial load
- In progress: other primary
 - packaging, other
 - product types

Factors affecting heat flux measurements

Case studies: test of heat flux sensor performance under a variety of different conditions

- Solids content
- Fill volume
- Cycle parameters: Freezing protocol, P_c, T_s
- Study secondary drying kinetics in amorphous formulations: sucrose and sucrose/BSA mixtures
- In progress: Preliminary studies on design space creation

Factors affecting heat flux measurements

Container

Case studies: test of heat flux sensor performance under a variety of different conditions

- Solids content
- Fill volume
- Cycle parameters: Freezing protocol, P_c, T_s
- Study secondary drying kinetics in amorphous formulations: sucrose and sucrose/BSA mixtures
- In progress: Preliminary studies on design
 space creation

- different vial size:
- \Rightarrow 1cc, 3cc, 5cc • different shelf
- load
 - \Rightarrow full / partial
 - load
- In progress: other primary
 - packaging, other
 - product types

Form./Process

Factors affecting heat flux measurements

Case studies with heat flux sensor: Experimental set up

Process setup

Freezing:

Controlled nucleation :at -5°C (Millrock FreezeBooster[®]) Random nucleation: -1 °C/min \rightarrow -50 °C <u>Primary drying setup</u>: Shelf temperature: -25 °C Chamber pressure : 100 mTorr <u>Secondary drying setup</u>: Shelf temperature: 30 °C Chamber pressure : 100 mTorr

Formulations/vial size

- Sucrose solutions (at different concentrations) with/without 10 mg/mL protein (BSA)
- 10R vials
- ➢ Fill volume: variable

TC vials

Shelf setup

Case study I: Impact of freezing protocol

- Freezing: Heat flux measurements give more insights into degree of homogeneity in freezing behavior of vials.
- > Primary drying: no impact of freezing protocol on heat flux measurements

Case study II: Impact of degree of shelf loading

Case study III: Impact of solids content

Case study IV: Impact of fill volume

Case study V: Studying kinetics during secondary drying

- Correlation of heat flux during secondary drying to residual moisture (r.m.) content of the samples
- Heat flux decreased asymptotically in a similar way as compared to the water loss over time up to appr. 1.5% w/w
- Currently the sensitivity is not yet good enough to detect end of secondary drying.

Case study VI: Feasibility of design space creation with more parameters

Measure heat flux under different conditions (Ts and Pc) within 1 run and create a preliminary design space with multiple parameters

Case study VI: Feasibility of design space creation with more parameters

Summary

- Factors affecting heat flux measurements
 - Solids content: Higher concentration = lower heat flux
 - Freezing protocol: freezing stage
- > Factors with no significant impact on heat flux measurements
 - Freezing protocol: primary drying stage
 - Degree of shelf loading
 - Potential to use smaller batch sizes ≤7 vials in cycle development (application of micro freeze dryer)
 - Fill volume/fill height (1-5 mL/0.6-1.7 cm)
- ➤ Accuflux[™] sensitive enough to monitor secondary drying progress up to a residual moisture level of ~ 1.5% w/w.
- Feasibility to create a preliminary design space with multiple parameters in one run, further investigations needed.

PAT in the Laboratory: Case Studies in evaluating head space moisture

- Evaluation of application as non-invasive high throughput method for product and process characterization
 - Product characterization (e.g. batch homogeneity after freeze drying)
 - Process characterization
- Lighthouse FMS-1400 headspace moisture system
 - 6R vials used for all studies
 - Comparison against golden standard method (Karl-Fischer)

Frequency Modulation Spectroscopy (FMS)

- Principle: Determination of residual moisture
 - None-destructive and fast method, 100% control possible
 - Suitable for complete shelf mapping and identification of "hot" and "cold" spots on the shelves¹
 - Quick characterization of drying efficiency and homogeneity as a function of the cycle (temperature and time)¹
- Possible applications:
 - Information about product homogeneity including influence of different formulations on drying homogeneity
 - Characterization of product, indirect characterization of drying process
 - Stability study concerning vials with different residual moistures

Coriolis Pharma Biopharmaceutical Research and Development Service ¹ Cook I a., Ward KR. Headspace Moisture Mapping and the Information That Can Be Gained about Freeze-Dried Materials and Processes. PDA J Pharm Sci Technol. 2011;65(5):457-467. doi:10.5731/pdajpst.2011.00760

Establishing a correlationship between headspace moisture and direct moisture measurements

KF/ Lighthouse up to 3%

- Linear correlation between moisture measured by headspace analysis (FMS) and by Karl Fischer (KF)
 - Valid for 5% sucrose up to \sim 3% cake residual water content

Coriolis Pharma Biopharmaceutical Research and Development Service

Case study I: Using FMS to study moisture distribution as a function of formulation

oriolis Phar Biopharmaceutical Research and Development Service

- Conservative cycle used: Cake appearance acceptable, minor shrinkage in some vials
- Significant inhomogeneity in moisture distribution with sucrose
- > Addition of protein improved homogeneity in moisture distribution

		FD02		5% suc	rose											FD02 5% sucr 25 mg/ml BSA																	
		Sh2			5%	w/v	suc	rose	solu	tion	, 6R '	vials	, 2.5	ml f	ill		Sh3	25	mg/r	nl BS	SA, 5	% w/	∕v su	cros	e sol	utio	n, 6F	R via	ls, 2.	5 ml	fill		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
		0.958	0 811	0.812	0 848	0.852	0 859	0 844	0 876	0 849	0 868	0.831	0 897	0 995	1 032	1 106	0 32	1 0 319	0 343	0 345	0 342	0 366	0 349	0 331	0 333	0 396	0.438	0 376	0 387	0 590	0 541		
		0.843	0.866	0.764	0 911	0.807	0.825	0.832	0.853	0.91	0.98	0.831	0.88	0.918	0.868	1 01	0.35	5 0 33/	0 333	0 336	0 386	0 353	0 353	0.409	0.385	0.464	0.354	0 389	0 / 21	0.396	0.312		
		0,043	0,000	0,704	0,911	1 1 2 6	0,023	0,032	1.062	1 061	0,50	1 221	0,00	0,010	0.967	0.045	0,33	6 0 204	5 0 246	0,330	0,300	0.246	0,333	0.267	0,500	0,404	0.255	0,303	0,421	0,350	0,312		
		0,731	0,035	0,805	1.005	0,000	0,837	0,823	1,002	1,001	1.440	1,221	0,65	0,981	0,907	0,945	0,34		- 0,340	0,493	0,371	0,540	0,430	0,307	0,309	0,449	0,333	0,333	0,400	0,420	0,427		
		0,783	0,825	0,818	1,065	0,808	0,868	1,09	0,93	0,901	1,446	0,837	0,952	0,843	0,929	0,898	0,40	0,325	0,328	0,432	0,357	0,554	0,398	0,477	0,483	0,408	0,439	0,396	0,396	0,354	0,346		
		0,719	0,847	1,06	1,132	0,821	1,116	0,954	1,141	0,976	1,137	1,027	0,888	1,087	0,835	0,807	0,30	19 0,457	0,348	0,392	0,386	0,434	0,388	0,459	0,531	0,474	0,536	0,401	0,377	0,380	0,340		
		0,986	0,791	0,845	0,774	1,6	1,43	0,941	1,236	0,966	0,888	1,05	0,899	0,997	0,837	0,771	0,45	67 0,344	0,341	0,355	0,347	0,524	0,414	0,389	0,507	0,396	0,467	0,376	0,371	0,372	0,292		
		0,718	0,766	0,839	0,794	0,817	1,135	0,921	0,767	1,504	0,892	2,035	1,109	0,921	0,77	0,689	0,35	63 0,388	3 0,345	0,406	6 <i>0,</i> 398	0,454	0,374	0,433	0,415	0,495	0,411	0,419	0,384	0,365	0,357		
Min	0.65	0,71	0,72	0,917	0,845	1,461	0,988	1,238	1,323	1,073	1,373	1,107	0,949	0,75	0,801	0,683	0,41	.1 0,371	L 0,375	0,525	0,351	0,382	0,450	0,451	0,572	0,408	0,384	0,369	0,367	0,352	0,329	Min	0.20
iviin.	0,65	0,704	0,922	0,946	0,724	1,647	1,015	1,308	1,466	1,213	0,787	0,881	0,797	0,855	0,687	0,752	0,35	0,375	5 0,354	0,399	0,508	0,458	0,375	0,374	0,425	0,541	0,381	0,386	0,474	0,314	0,280	IVIIII.	0,25
Max.	2,04	0,681	0,709	0,747	0,84	0,705	1,097	1,165	0,982	1,868	1,265	1,213	1,099	1,083	0,742	0,677	0,30	05 0,335	5 0,423	0,348	0,399	0,603	0,383	0,369	0,423	0,402	0,379	0,444	0,327	0,295	0,314	Max.	0,66
Aver.	0,91	0,76	0,879	0,734	1,399	1,297	0,808	1,351	1,31	1,007	0,93	1,093	1,275	1,014	0,762	0,743	0,30	0 0,318	3 0,333	0,344	0,366	0,390	0,649	0,606	0,418	0,657	0,467	0,454	0,344	0,313	0,270	Aver.	0,38
SD	0,22	0,706	0,724	0,823	0,79	0,767	1,087	1,431	1,277	1,081	0,789	1,44	0,965	0,76	0,717	0,657	0,30	06 0,460	0,346	0,342	0,379	0,402	0,470	0,374	0,449	0,591	0,415	0,316	0,321	0,260	0,293	SD	0,08
		0,69	0,725	1,015	1,073	1,471	0,735	1,331	1,126	0,999	1,016	1,155	0,918	0,662	0,785	0,721	0,29	05 0,323	8 0,431	0,511	0,554	0,536	0,347	0,436	0,376	0,385	0,355	0,329	0,415	0,293	0,287		
		0,649	0,724	0,719	0,755	1	1,226	1,686	0,723	0,991	0,702	1,087	1,017	0,877	0,809	0,859	0,39	01 0,446	5 0,314	0,507	0,421	0,371	0,441	0,397	0,624	0,435	0,467	0,331	0,291	0,297	0,307		
		0,677	1,165	1,158	0,835	0,832	1,394	0,846	1,432	1,314	0,903	0,774	0,987	0,792	0,747	0,684	0,37	1 0,334	ŧ 0,310	0,474	0,362	0,457	0,650	0,374	0,438	0,499	0,422	0,333	0,297	0,298	0,298		
		0,657	0,808	0,769	0,878	0,806	1,108	1,27	1,313	0,829	0,714	1,261	0,832	1	0,709	0,703	0,37	0 0,411	L 0,410	0,339	0,413	0,599	0,427	0,485	0,445	0,553	0,344	0,440	0,341	0,297	0,262		
		0.692	0.902	0.756	0.921	1.156	0.846	0.933	0.928	0.766	0.749	0.835	1.265	0.748	0.685	0.726	0.39	0.339	0.340	0.464	0.384	0.475	0.432	0.339	0.438	0.340	0.375	0.325	0.301	0.289	0.299		
		0.654	0 699	0 721	0.886	0.884	0 723	0.832	0 785	1 173	0 775	0.837	0 745	0 745	0 734	0 764	0.34	9 0 451	0.432	0 568	0 375	0 5 1 5	0 586	0 375	0.479	0.459	0.489	0 349	0 301	0.290	0.258		
		0.695	0,672	0.783	0.754	0 799	0.876	0.765	0.81	0.986	0 728	0,057	0,743	0,743	0.843	0.813	0,34	0.28/	0,432	0.3/1	0 387	0 335	0,000	0,509	0,475	0,435	0,403	0,343	0 337	0.304	0,205		
		0,095	0,072	0,785	0,734	0,755	0,370	0,705	1.027	0,980	0,720	0.764	0,771	0,070	0.759	0,013	0,34	0,20	0,331	0.240	0,307	0.333	0,409	0,305	0,302	0,725	0.219	0,393	0,337	0,304	0.251		
		0,656	0,711	0,665	0,737	0,853	0,729	0,772	1,037	0,827	0,733	0,764	0,781	0,725	0,758	0,769	0,32	.7 0,31:	0,411	0,349	0,385	0,384	0,389	0,305	0,363	0,316	0,318	0,384	0,322	0,305	0,251		
		0,707	0,695	0,659	0,698	0,657	0,754	0,746	0,813	0,797	0,67	0,736	0,794	0,791	0,787	0,69	0,28	3 0,325	0,339	0,276	0,313	0,263	0,304	0,318	0,325	0,311	0,287	0,303	0,271	0,276	0,258		
		0,746	0,713	0,844	0,758	0,773	0,7	0,699	0,793	0,814	0,733	0,718	0,728	0,802	0,693	0,755	0,26	5 0,272	2 0,267	0,302	0,349	0,299	0,281	0,274	0,314	0,288	0,309	0,258	0,356	0,353	0,253		

Case study II: Using FMS to study moisture distribution as a function of cycle

		5002		F0(C	Cons	erva	ative	cyc	le	5% sucrose solution, 6R vials, 2.5 ml fill									Ontimized cycle										
		FDUZ		5% SUC	rose																		Oþ	CIIII	zeu	Cyci	e				
		5n2	2	3	л	Б	6	7	Q	٥	10	11	12	13	14	15	Sh2	-	-		_	-	_	~	•						
		-	-	5	-	5	Ū	,	Ū	,	10			15	14	15	1	2	3	4	5	6	/	8	9	10	11	12	13	14	15
		0,958	0,811	0,812	0,848	0,852	0,859	0,844	0,876	0,849	0,868	0,831	0,897	0,995	1,032	1,106	0,466	0,571	0,566	0,683	0,591	0,599	0,605	0,639	0,574	0,662	0,589	0,674	0,586	0,598	0,721
		0,843	0,866	0,764	0,911	0,807	0,825	0,832	0,853	0,91	0,98	0,831	0,88	0,918	0,868	1,01	0,598	0,564	0,599	0,575	0,624	0,582	0,569	0,576	0,657	0,581	0,581	0,628	0,813	0,659	0,613
		0,731	0,895	0,865	0,802	1,126	0,837	0,823	1,062	1,061	0,914	1,221	0,83	0,981	0,967	0,945	0,533	0,593	0,596	0,581	0,609	0,55	0,556	0,55	0,586	0,609	0,588	0,811	0,565	0,609	0,602
		0,783	0,825	0,818	1,065	0,808	0,868	1,09	0,93	0,901	1,446	0,837	0,952	0,843	0,929	0,898	0,551	0,559	0,553	0,608	0,587	0,532	0,581	0,573	0,594	0,643	0,645	0,531	. 0,6	0,602	0,6
		0,719	0,847	1,06	1,132	0,821	1,116	0,954	1,141	0,976	1,137	1,027	0,888	1,087	0,835	0,807	0,733	0,62	0,597	0,565	0,469	0,543	0,47	0,609	0,51	0,559	0,578	0,59	0,762	0,55	0,57
		0,986	0,791	0,845	0,774	1,6	1,43	0,941	1,236	0,966	0,888	1,05	0,899	0,997	0,837	0,771	0,549	0,533	0,492	0,564	0,571	0,514	0,478	0,582	0,584	0,509	0,605	0,79	0,442	0,55	0,479
		0,718	0,766	0,839	0,794	0,817	1,135	0,921	0,767	1,504	0,892	2,035	1,109	0,921	0,77	0,689	0,904	0,559	0,505	0,455	0,559	0,517	0,521	0,415	0,473	0,677	0,567	0,517	0,546	0,511	0,619
		0,71	0,72	0,917	0,845	1,461	0,988	1,238	1,323	1,073	1,373	1,107	0,949	0,75	0,801	0,683	0,568	0,558	0,524	0,588	0,551	0,554	0,57	0,555	0,521	0,593	0,502	0,665	0,516	0,548	0,49
Min.	0,65	0,704	0,922	0,946	0,724	1,647	1,015	1,308	1,466	1,213	0,787	0,881	0,797	0,855	0,687	0,752	0,491	0,563	0,567	0,583	0,653	0,427	0,745	0,46	0,555	0,644	0,66	0,413	0,606	0,464	0,549
Max.	2,04	0,681	0,709	0,747	0,84	0,705	1,097	1,165	0,982	1,868	1,265	1,213	1,099	1,083	0,742	0,677	0,771	0,549	0,567	0,523	0,451	0,565	0,458	0,605	0,541	0,456	0,494	0,525	0,537	0,519	0,47
Aver.	0,91	0,76	0,879	0,734	1,399	1,297	0,808	1,351	1,31	1,007	0,93	1,093	1,275	1,014	0,762	0,743	0,531	0,543	0,444	0,531	0,529	0,518	0,507	1,02	0,528	0,557	0,668	0,531	. 0,54	0,535	0,58
SD	0,22	0,706	0,724	0,823	0,79	0,767	1,087	1,431	1,277	1,081	0,789	1,44	0,965	0,76	0,717	0,657	0,603	0,557	0,599	0,419	0,529	0,57	0,479	0,574	0,602	0,49	0,554	0,529	0,474	0,474	0,49
		0,69	0,725	1,015	1,073	1,471	0,735	1,331	1,126	0,999	1,016	1,155	0,918	0,662	0,785	0,721	0,541	0,452	0,53	0,494	0,567	0,594	0,489	0,582	0,528	0,537	0,547	0,557	0,506	0,585	0,51
		0,649	0,724	0,719	0,755	1	1,226	1,686	0,723	0,991	0,702	1,087	1,017	0,877	0,809	0,859	0,467	0,558	0,538	0,488	0,881	0,525	0,528	0,503	0,498	0,433	0,574	0,492	0,394	0,446	0,47
		0,677	1,165	1,158	0,835	0,832	1,394	0,846	1,432	1,314	0,903	0,774	0,987	0,792	0,747	0,684	0,454	0,569	0,611	0,55	0,57	0,622	0,543	0,496	0,439	0,536	0,597	0,561	0,548	0,49	0,5
		0.657	0.808	0.769	0.878	0.806	1.108	1.27	1.313	0.829	0.714	1.261	0.832	1	0.709	0.703	0,492	0,519	0,514	0,52	0,521	0,543	0,598	0,527	0,521	0,506	0,481	0,535	0,461	0,529	0,61
		0.692	0.902	0.756	0.921	1 156	0.846	0.933	0.928	0 766	0 749	0.835	1 265	0 748	0.685	0.726	0.486	0 595	0 521	0.55	0.5	0 465	0 538	0 517	0 576	0.438	0.645	0 5 2 3	0.51	0 525	0.54
		0.654	0,502	0,730	0,921	0.884	0,040	0,555	0.785	1 172	0,775	0,000	0.745	0.745	0.724	0.764	0.583	0 535	0.512	0 554	0 476	0.544	0.524	0.537	0.558	0 713	0.541	0 555	0 592	0.452	0.84
		0,034	0,099	0,721	0,000	0,884	0,725	0,852	0,785	1,175	0,775	0,857	0,745	0,745	0,754	0,704	0,383	0,555	0,512	0,554	0,470	0,544	0,524	0,557	0,558	0,713	0,541	0,555	0,392	0,452	0,04
		0,695	0,672	0,783	0,754	0,799	0,876	0,765	0,81	0,986	0,728	0,69	0,771	0,678	0,843	0,813	0,482	0,540	0,510	0,557	0,510	0,553	0,530	0,533	0,572	0,582	0,571	0,583	0,467	0,558	0,57
		0,656	0,711	0,665	0,737	0,853	0,729	0,772	1,037	0,827	0,733	0,764	0,781	0,725	0,758	0,769	0,497	0,506	0,492	0,455	0,555	0,587	0,57	0,603	0,649	0,5	0,623	0,525	0,528	0,581	0,41
		0,707	0,695	0,659	0,698	0,657	0,754	0,746	0,813	0,797	0,67	0,736	0,794	0,791	0,787	0,69	0,464	0,781	0,652	0,527	0,499	0,534	0,516	0,532	0,606	0,623	0,555	0,519	0,541	0,516	0,71
		0,746	0,713	0,844	0,758	0,773	0,7	0,699	0,793	0,814	0,733	0,718	0,728	0,802	0,693	0,755	0,474	0,452	0,501	0,577	0,514	0,574	0,486	0,429	0,509	0,537	0,586	0,473	0,526	0,677	0,69

With a less conservative/more optimized cycle: More uniform moisture distribution (batch homogeneity)

More radiation effects with more conservative cycle

Challenges with headspace measurements

- Still not a high throughput method
 - But much quicker than KF!
- Equilibration time needed before measurements are performed on the day of the measurement
- → Need for product specific method development and validation (against KF)

- Headspace moisture is high(er) throughput tool for moisture measurement (as compared to traditional KF method)
 - Method needs to be developed and validated for each formulation/container closure configuration
- Headspace moisture is a versatile tool in product and process characterization
 - Application during equiment characterization?
- Factors affecting batch homogeneity
 - Formulation: Higher batch inhomogeneity with no protein
 - Minimum protein conc. for improvement of homogeneity?
 - Optimizing freeze drying cycle
 - Conservative vs. Optimized cycles
 - Impact of more aggressive cycles, as studied by FMS?

Questions?

Back up slides

Employing the heat flux sensor as a PAT tool in freeze-drying: Freezing (CN vs. RN)

Heat flux sensor can reliably indicate nucleation events

Difference between RN and CN visible

 \rightarrow thermodynamic evidence that freezing with CN is more repeatable than with RN

Employing the heat flux sensor as a PAT tool in freeze-drying: Primary drying

% sucrose/ Fill volume	1 ^{ry} drying [h]	ΔP _c [mTorr]	ΔT(T _s -T _p) [°C]
5%/3ml	35.6	22	0.3
20%/3ml	40.9	16	0.0
5%/1ml	22.5	7	-0.1
5%/5ml	65.9	13	1.2

- Determination of end point of primary drying by Accuflux[™] in good agreement with T_p and ΔT.
- ➤ Accuflux[™] detected end of primary drying before pressure difference between the pirani & capacitance gauge reached 0.
- Not as batch representative as comparative pressure measurements.

Product temperature estimation by heat flux measurements

$$T_{p_{,}est} = \frac{heat \ flux - Kv * Ts}{-Kv}$$

- Although the heat flux measurements do not take all heat transfer effects into account, the result is in good accordance with the thermocouple readings
 - Simplified handling: no
 Thermocouple needed
 - Non invasive tool: no impact on drying behavior!

Employing the heat flux sensor as a PAT tool in freeze-drying: Secondary drying

- Heat flux and residual moisture curve show the same course
- Further time points between 6 and 20 h are necessary to define if heat flux measurements can indicate the end of secondary drying

Determination of mass and heat transfer coefficients by heat flux

Shelf setup

Process setup

Product: Water

Freezing:

- Controlled nucleation at -5 °C
- Freezing to: -50 °C (1 °C/min)

Primary drying:

- Shelf temperature: 0 °C;
- Chamber pressure: 100 mTorr

Secondary drying:

- Shelf temperature: 30 °C (0.1 °C/min)
- Chamber pressure: 100 mTorr

Calculations

$$K_{v(LyoPAT)} = \frac{heat flux}{(Ts - Tp)}$$

$$K_{v(grav)} = \frac{\frac{dm}{dt} * \Delta H_s}{A_v * (Ts - Tp)}$$

With shelf temperature (T_s); product temperature (T_p); Δ H_s is the heat of sublimation (2594.4 J/g). dm/dt corresponds to the mass loss over time.

Determination of mass and heat transfer coefficients by heat flux measurements (ctd)

- > In all cases the $K_{v(grav)}$ value was higher than the $K_{v(LyoPAT)}$ values.
- ➤ The corner K_v values for LyoPAT[™] and the gravimetrical method are higher
 → sensor is affected by radiation effects
- Next software version comes with calibration/adjustment function

